e Complete Book
on Angular 8

The Complete Guide to Angular

Written by Nate Murray, Felipe Coury, Ari Lerner, and Carlos Taborda

© 2018 Fullstack.io

All rights reserved. No portion of the book manuscript may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means beyond the number of purchased copies,
except for a single backup or archival copy. The code may be used freely in your projects,
commercial or otherwise.

The authors and publisher have taken care in preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damagers in connection with or arising out

of the use of the information or programs container herein.

Published in San Francisco, California by Fullstack.io.

@FULLSTACK.io

We’d like to thank our contributors to this book including:

e Frode Fikke for technical edits

e Nic Raboy, and Burke Holland for their contribution to the NativeScript chapter
e Travas Nolte for his work on many chapters

e Daniel Rauf for his edits on RxJS, Redux, and Routing

Contents

Book Revision L
Bug Reports
Vote for New Content (new!)
Be notified of updates via Twitter
We'd love to hear fromyou! oo

S VI W

HowtoRead ThisBook
Running Code Examples
Angular CLI

Code Blocksand Context
Code Block Numbering
AWordon Versioning
GettingHelp
EmailingUs
Chapter Overview i

NN U AW W N

Writing Your First Angular Web Application
Simple RedditClone
Getting started

Node.jsandnpm
TypeScript e
Browser
Special instruction for Windows users
Angular CLI
Example Project
Writing ApplicationCode L 11
Running the application 11
Making aComponent 13

SIS, IS, BN BT NG NG NG S

CONTENTS

Importing Dependencies. 15
Component Decorators 16
Adding a template with templateUrl 17
Addingatemplate 17
Adding CSS Styles with styleUrls 18
Loading Our Component 19
Adding Data to the Component 20
Working With Arrays 24
Using the User Item Component. 28
Rendering the UserItemComponent 29
AcceptingInputs L Lo 30
PassinganInputvalue 31
Bootstrapping Crash Course 33
declarations 35
imports e e e e e 35
providers e e e e e e e e e e e e 36
bootstrap e 36
Expanding our Application 36
Adding CSS 38
The Application Component 39
Adding Interaction o 41
Adding the Article Component 46
Rendering Multiple Rows 56
Creating an Articleclass. 56
Storing Multiple Articles 61
Configuring the ArticleComponent with inputs 63
Rendering a List of Articles 65
Adding New Articles 67
Finishing Touches 68
Displaying the Article Domain 68
Re-sorting Basedon Score L. 69
Deployment 70
Building Our App for Production 71
UploadingtoaServer 72
Installingnow 72

Full Code Listing 73

CONTENTS

Wrapping Up 73
GettingHelp 73
TypeScript 74
Angular is built in TypeScript L L. 74
What do we get with TypeScript? 76
TYPes . o o 77
Tryingitout witha REPL 79
Built-intypes 79
Classes . . . oot 82
Properties. 82
Methods 83
Constructors L 85
Inheritance L 87
Utilities o o 89
Fat Arrow Functions 89
Template Strings 91
Wrapping up. o 92
How Angular Works 93
Application L 93
The Navigation Component 95

The Breadcrumbs Component 95

The Product List Component 95
How to Use This Chapter 98
Product Model 99
Components 100
Component Decorator L 103
Componentselector 103
Component template 104
Adding AProduct 104
Viewing the Product with Template Binding 107
Adding More Products 107
SelectingaProduct 109
Listing products using <products-list> 109

The ProductsListComponent v v v v i it e e 113

CONTENTS

Configuring the ProductsListComponent @Component Options 113
Componentinputs 114
Component outputs 116
Emitting Custom Events. 118
Writing the ProductsListComponent Controller Class 120
Writing the ProductsListComponent View Template. 121
The Full ProductsListComponent Component. 123
The ProductRowComponent Component 125
ProductRowComponent Configuration 126
ProductRowComponent template 127
The ProductImageComponent Component 128
The PriceDisplayComponent Component 128
The ProductDepartmentComponento v v i v i i i 129
NgModule and Bootingthe App 131
Bootingtheapp 132

The Completed Project 133
Deployingthe App 134
A Word on Data Architecture 135
Built-in Directives 137
Introduction 137
NGIE o e e e e e e e e e e 137
NgSwitch . . . o e e e e e e e 138
NgStyle . . o e e e e e e e e e 140
NGCLass . v v v v v e 143
NGFOTr . . . e e e e e e e 147
Gettinganindex 152
NgNonBindable i i e e e e e e e 153
Conclusion 154
Formsin Angular 155
Forms are Crucial, Forms are Complex 155
FormControls and FOrmGroups o v v v v v v it e e e e e 156
FormControl e e 156
FormGroup o v o e e e e e e e e e e 157

Our First Form 158

CONTENTS

Loading the FormsModule 159
Reactive- vs. template-driven Forms 160
Simple SKU Form: @Component Decorator. 160
Simple SKU Form: template 161
Simple SKU Form: Component Definition Class 165
Tryitoutl. 166
Using FormBuilder 167
Reactive Forms with FormBuilder 168
Using FormBuildert 168
Using myForm inthe view 170
Tryitout!. 171
Adding Validations L 173
Explicitly setting the sku FormControl as an instance variable 174
Custom Validations 179
Watching For Changes 181
ngModel 183
Wrapping Up 185
Dependency Injection 186
Injections Example: PriceService 187
Dependency Injection Parts 192
Playing with an Injector. 193
Providing Dependencies with NgModule 196
Providersarethe Key 198
Providers 199
UsingaClass 199
UsingaFactory 204
Dependency Injection in Apps 207
MoreResources 207
HTTP . . 208
Introduction 208
Using @angular/common/http L 209
import from @angular/common/http 209
ABasicRequest. 211

Building the SimpleHttpComponent Component Definition 212

CONTENTS

Building the SimpleHttpComponent template 212
Building the SimpleHttpComponent Controller 213

Full SimpleHttpComponent i 214
Writing a YouTubeSearchComponent 215
Writing a SearchResult 217
Writing the YouTubeSearchService 218
Writing the SearchBoxComponent 224
Writing SearchResultComponent 232
Writing YouTubeSearchComponent 233
@angular/common/http APL. 237
Making aPOST request o oo v it 238

PUT /PATCH /DELETE /HEAD 238
Custom HTTP Headers 239
Summary 240
Routing 241
Why Do We Need Routing? 241
How client-side routing works 242
The beginning: using anchortags 243

The evolution: HTML5 client-side routing 244
Writing our first routes Lo L 245
Components of Angular routing 245
Imports 245
Routes 246
Installingour Routes 248
RouterOutlet using <router-outlet> 248
RouterLink using [routerLink] 250
Putting it all together 251
Creating the Components 253
HomeComponent e e e 253
AboutComponent e e e e 254
ContactComponent @ i i i e e e 255
Application Component 256
Configuring the Routes 257
Routing Strategies 259

Running the application 260

CONTENTS

Route Parameters 263
ActivatedRoute 264
Music Search App e 265
First Steps 267

The SpotifyService vt 268

The SearchComponent o v i it e 269
Tryingthesearch 280
TrackComponent o i i e e e e e e e e 282
Wrapping up musicsearch 284
Router Hooks 285
AuthService i e e e e e 286
LoginComponent i i i i i i e e e e e e e e e e 288
ProtectedComponent and Route Guards 290
Nested Routes 297
ConfiguringRoutes oL 297
ProductsModule i e e e e e 298
Summary 304
Data Architecture in Angular o oo L 305
An Overview of Data Architecture 305
Data Architecture in Angular 0. 306
Data Architecture with Observables - Part 1: Services 308
Observablesand RXJS 308
Note: Some RxJS Knowledge Required 308
Learning Reactive Programmingand RxJS 309
Chat App Overview e 310
Components 312
Models e 313
Services e 314
Summary 314
Implementing the Models 315
USBT & v it i e 315
Thread o i e e e e e e e e e e e e e e e 316
MESSAGE .« v v v i i e 316

Implementing UsersService 318

CONTENTS

currentUser streamo 319
Settinganewuser 319
UsersService.ts e 321
The MessagesService oo i i e 322
the newMessages stream 322
themessages stream 324
The Operation Stream Pattern 324
Sharing the Stream 326
Adding Messages to the messages Stream 327
Our completed MessagesService 332
Trying out MessagesService 335
The ThreadsService e 337
A map of the current set of Threads (inthreads) 337
A chronological list of Threads, newest-first (in orderedthreads). . . 342
The currently selected Thread (in currentThread) 343

The list of Messages for the currently selected Thread (in current-
ThreadMessSages) . « . v v v v v v v v e e e 345
Our Completed ThreadsService 348
Data Model Summary 350
Data Architecture with Observables - Part 2: View Components 351
Building Our Views: The AppComponent Top-Level Component 351
The ChatThreadsComponent v v v v i i i et 354
ChatThreadsComponent template 355
The Single ChatThreadComponent 356
ChatThreadComponent Controller and ngOnInit 357
ChatThreadComponent template 358
The ChatWindowComponent v i it 358
The ChatMessageComponent v v v i v i e e e et et e e 370
The ChatMessageComponent template v v v v v v v v v 372
The ChatNavBarComponent o v v v i i i e i 373
The ChatNavBarComponent @Component v v v v v v v v v v o 373
The ChatNavBarComponent template 375
Summary 376

Introduction to Redux with TypeScript 378

CONTENTS

Reduxo 379
Redux: KeyIdeas 380
CoreReduxIdeas 381
What’sa reducer? 381
Defining Action and Reducer Interfaces 382
Creating Our FirstReducer 383
Running Our FirstReducer, 384
Adjusting the Counter With actions 385
Reducerswitch 387
Action “Arguments” 388
Storing Our State 389
Using the Store 391
Being Notified with subscribe 391
The Coreof Redux 396
AMessaging App . . .« v v oo 397
Messaging Appstate L 397
Messaging Appactions L e 398
Messaging Appreducer 399
Trying Out Our Actions 403
ActionCreators 404
UsingReal Redux 406
Using Reduxin Angular. 407
Planning Qur App ottt 408
Setting UpRedux 409
Defining the Application State 409
Defining the Reducers 409
Defining Action Creators 410
Creatingthe Store 411
Providing the Store 413
Bootstrapping the App. 415
The AppComponent o e 416
imports e e e e 416
The template 417
Theconstructor 418
Putting It All Together 420

What’'s Next o e 420

CONTENTS

References 421
Intermediate Reduxin Angular 422
Context For ThisChapter 423
Chat App Overview 423
Components 424
Models 424
Reducers 425
Summary 425
Implementing the Models 426
User e 426
Thread i e 427
MESSATE . & v v i i e 427
AppState. oL 428
A Wordon Code Layout. 428

The RootReducer 429
TheUsersState 430

The ThreadsState 430
Visualizing Our AppState 431
Building the Reducers (and Action Creators) 433
Set Current User Action Creators 433
UsersReducer - Set Current User. 434
Thread and Messages Overview 435
Adding a New Thread Action Creators 436
Adding a New Thread Reducer. 436
Adding New Messages Action Creators 438
Adding A New Message Reducer 439
Selecting A Thread Action Creators 441
Selecting A Thread Reducer 442
Reducers Summary 443
Building the Angular Chat App 444
The top-level AppComponent 445
TheChatPage e 447
Container vs. Presentational Components 448
Building the ChatNavBarComponent 449

Redux Selectors 451

CONTENTS

Threads Selectors 453
Unread Messages Count Selector 454
Building the ChatThreadsComponent 455
ChatThreadsComponent Controller 456
ChatThreadsComponent template 457
The Single ChatThreadComponent 458
ChatThreadComponent template 460
Building the ChatWindowComponent 461
The ChatMessageComponent v v v v i i i it e 469
Setting incoming 470
The ChatMessageComponent template 470
Summary 472
Advanced Components 473
Styling . . .o 474
View (Style) Encapsulation 476
Shadow DOM Encapsulation 481

No Encapsulation 482
Creating a Popup - Referencing and Modifying Host Elements 485
Popup Structure 486
UsingElementRef 488
Binding tothehost 490
Adding a Button usingexportAs 493
Creating a Message Pane with Content Projection 495
Changing the Host’'s CSS 497
Usingng-content 497
Querying Neighbor Directives - Writing Tabs 499
ContentTabComponent i i i i it i it 500
ContentTabsetComponent Component 501
Using the ContentTabsetComponent 504
Lifecycle Hooks 505
OnInit and OnDestroy v v i i e 506
ONChanges . . v v v i e 511
DoCheck e 517

AfterContentlnit, AfterViewlnit, AfterContentChecked and After-
ViewChecked 531

CONTENTS

Advanced Templates 538
Rewriting ngIf -ngBookIf 539
Rewriting ngFor - NgBookFor 542

Change Detection 548
Customizing Change Detection 553
ZONES . . vttt e 561
Observablesand OnPush 562

Summary 567

Testing 568

Testdriven? 568

End-to-end vs. Unit Testing 569

Testing Tools 569
Jasmine e 569
Karma. 570

Writing Unit Tests o 571

Angular Unit testing framework L. 571

Setting Up Testing 572

Testing Servicesand HTTP 573
HTTP Considerations 574
Stubs . .. 575
Mocks 576
HttpClient HttpTestingController 577
TestBed.configureTestingModule and Providers 578
Testing getTracko i 578

Testing Routing to Components 585
Creating a Router for Testing 586
Mocking dependencies o 589
Spies 590

Back to Testing Code 594
fakeAsync and advanceo 596
inject . o e e e e e e e e e 597
Testing ArtistComponent’s Initialization 598
Testing ArtistComponent Methods 599
Testing ArtistComponent DOM Template Values 600

Testing Forms 603

CONTENTS

Creating aConsoleSpy oo v ittt it it 606
Installing the ConsoleSpy 607
Configuring the Testing Module 608
Testing The Form 609
Refactoring Our Form Test 611
Testing HTTP requests i 615
TestingaPOST 615
Testing DELETE ¢ v vt e e e e e e e 618
Testing HTTP Headers 619
Testing YouTubeSearchService i i .. 621
Conclusion 628
Converting an Angular]JS 1.x ApptoAngular 629
Peripheral Concepts 629
What We're Building 630
Mapping AngularJS 1to Angular 632
Requirements for Interoperability 634
The Angular]S1App o o oo 635
Thengl-app HTML 636
Code OVerview 638
ngl:PinsService o e 638
ngl: ConfiguringRoutes 640
ngl:HomeController 641
ngl: / HomeController template 641
ngl:pinDirective. L 642
ngl: pin Directive template 643
ngl: AddController e 644
ngl: AddController template 647
NELISUMMATY .« . v ottt e e e e e e e 649
Building AHybrid 649
Hybrid Project Structure. 650
Bootstrapping our Hybrid App 653
What We'll Upgrade 655

A Minor Detour: Typing Files 658
Writing ng2 PinControlsComponent 662

Using ng2 PinControlsComponent 664

CONTENTS

Downgrading ng2 PinControlsComponent tongl. 665
Adding Pinswithng2 668
Upgrading ngl PinsService and $statetong2 669
Writing ng2 AddPinComponent 670
Using AddPinComponent v ii i 677
Exposing an ng2 servicetongl. 678
Writing the AnalyticsService 678
Downgrade ng2 AnalyticsServicetongl 679
Using AnalyticsServiceinngl 680
Summary 681
References 682
NativeScript: Mobile Applications for the Angular Developer 683
What is NativeScript? 683
Where NativeScript Differs from Other Popular Frameworks 684

What are the System and Development Requirements for NativeScript? 685
Creating your First Mobile Application with NativeScript and Angular . . 688

Adding Build Platforms for Cross Platform Deployment 688
Building and Testing for Android andiOS 689
Installing JavaScript, Android, and iOS Plugins and Packages 690
Understanding the Web to NativeScript Ul and UX Differences. 690
Planning the NativeScript Page Layout 691
Adding UI ComponentstothePage 692
Styling Components with CSS 694
Developing a Geolocation Based Photo Application 696
Creating a Fresh NativeScript Project 697
Creating a Multiple Page Master-Detail Interface 697
Creating a Flickr Service for Obtaining Photos and Data 701
Creating a Service for Calculating Device Location and Distance . . . 707
Including Mapbox Functionality in the NativeScript Application . . . 710
Implementing the First Page of the Geolocation Application 712
Implementing the Second Page of the Geolocation Application 718
Tryitout! 719
NativeScript for Angular Developers 720

Changelog 721

CONTENTS

Revision 74 - 2019-05-30 e 721
Revision 73 -2019-01-08 721
Revision 72 - 2018-12-12 e 721
Revision 71 -2018-10-23 e 721
Revision 70 - 2018-09-13 e 721
Revision 69 - 2018-09-08 722
Revision 68 - 2018-05-08 i e 722
Revision 67 - 2018-01-17 i i it e e 722
Revision 66 - 2017-11-14 e 722
Revision 65-2017-11-01 e 723
Revision 64 - 2017-09-15 e 723
Revision 63 -2017-08-02 i e 723
Revision 62 -2017-06-23 723
Revision 61 -2017-05-24 e 723
Revision 60 - 2017-04-27 e 724
Revision 59 - 2017-04-07 i i e 724
Revision 58 - 2017-03-24 i e 724
Revision 57 - 2017-03-23 e 724
Revision 56 - 2017-03-22 e 725
Revision 55 -2017-03-17 o it e e 725
Revision 54 - 2017-03-10 i e 725
Revision 53 -2017-03-01 i i e 726
Revision 52 -2017-02-22 e 726
Revision 51 -2017-02-14 i i e 726
Revision 50 - 2017-02-10 e 726
Revision 49 - 2017-01-18 727
Revision 48 - 2017-01-13 e 727
Revision 47 - 2017-01-06 v i i e 727
Revision 46 - 2017-01-03 e 727
Revision 45 -2016-12-05 i e 727
Revision 44 - 2016-11-17 i i i e 727
Revision 43 - 2016-11-08 e 728
Revision 42 - 2016-10-14 e 728
Revision 41 -2016-09-28 e 728
Revision 40 - 2016-09-20 e 729

Revision 39 - 2016-09-03 e 729

CONTENTS

Revision 38 - 2016-08-29 729
Revision 37 -2016-08-02 729
Revision 36 - 2016-07-20 i i e 729
Revision 35-2016-06-30 e 729
Revision 34 - 2016-06-15 e 730
Revision 33 -2016-05-11 i e 730
Revision 32 - 2016-05-06 vt e 730
Revision 31 -2016-04-28 e 731
Revision 30 - 2016-04-20 e 731
Revision 29 - 2016-04-08 731
Revision 28 - 2016-04-01 e 731
Revision 27 - 2016-03-25 i e 731
Revision 26 - 2016-03-24 e 731
Revision 25 -2016-03-21 i e 732
Revision 24 - 2016-03-10 732
Revision 23 -2016-03-04 e 732
Revision 22 - 2016-02-24 e 733
Revision 21 -2016-02-20 733
Revision 20 - 2016-02-11 i e 733
Revision 19 -2016-02-04 e 733
Revision 18 - 2016-01-29 e 734
Revision 17 - 2016-01-28 v i i e 734
Revision 16 - 2016-01-14 e 734
Revision 15-2016-01-07 o v i ittt e i e 734
Revision 14 - 2015-12-23 e 735
Revision 13 - 2015-12-17 i i i e 735
Revision 12 -2015-11-16 i i i e e 736
Revision 11-2015-11-09 o i i it e 736
Revision 10 - 2015-10-30 e 737
Revision 9 - 2015-10-15 e 737
Revision 8 - 2015-10-08 738
Revision 7 - 2015-09-23 738
Revision 6 - 2015-08-28 e 738
Revision 5 -2015-08-01 e 738
Revision 4 - 2015-07-30 738

Revision 3 - 2015-07-21 o v v v i 739

CONTENTS

Revision 2 - 2015-07-15
Revision 1 - 2015-07-01

CONTENTS 1

Book Revision

Revision 74 - Covers up to Angular 8 (8.0.0, 2019-05-31)

Bug Reports

If you’d like to report any bugs, typos, or suggestions just email us at: us@fullstack.io’.

Vote for New Content (new!)

We're constantly updating the book, writing new blog posts, and producing new
material. You can now cast your vote for new content here?.

Be notified of updates via Twitter

If you’d like to be notified of updates to the book on Twitter, follow @fullstackio®

We'd love to hear from you!

Did you like the book? Did you find it helpful? We’d love to add your face to our list
of testimonials on the website! Email us at: us@fullstack.io®.

"mailto:us@fullstack.io?Subject=ng-book%202%20feedback
*https://fullstackio.canny.io/ng-book
*https://twitter.com/fullstackio
“mailto:us@fullstack.io?Subject=ng-book%202%20testimonial

How to Read This Book

This book aims to be the single most useful resource on learning Angular. By the
time you’re done reading this book, you (and your team) will have everything you
need to build reliable, powerful Angular apps.

Angular is a rich and feature-filled framework, but that also means it can be tricky to
understand all of its parts. In this book, we’ll walk through everything from installing
the tools, writing components, using forms, routing between pages, and calling APIs.

But before we dig in, there are a few guidelines I want to give you in order to get
the most out of this book. Briefly, I want to tell you:

« how to approach the code examples and
« how to get help if something goes wrong

Running Code Examples

This book comes with a library of runnable code examples. The code is available to
download from the same place where you downloaded this book.

We use the program npm’® to run every example in this book. This means you can
type the following commands to run any example:

npm install
npm start

If you’re unfamiliar with npm, we cover how to get it installed in the Getting
Started section in the first chapter.

*https://www.npmjs.com/

9
10

How to Read This Book 3

After running npm start, you will see some output on your screen that will tell you
what URL to open to view your app.

If you're ever unclear on how to run a particular sample app, check out the
README.md in that project’s directory. Every sample project contains a README .md
that will give you the instructions you need to run each app.

Angular CLI

With a couple of minor exceptions, every project in this book was built on Angular
CLI®. Unless specified otherwise, you can use the ng commands in each project.

For instance, to run an example you can run ng serve (this is, generally, what is run
when you type npm start). For most projects you can compile them to JavaScript
with ng build (we’ll talk about this more in the first chapter). And you can run end-
to-end tests with ng e2e, etc.

Without getting too far into the details, Angular CLI is based on Webpack, a tool
which helps process and bundle our various TypeScript, JavaScript, CSS, HTML,
and image files. Angular CLI is not a requirement for using Angular. It’s simply a
wrapper around Webpack (and some other tooling) that makes it easy to get started.

Code Blocks and Context

Nearly every code block in this book is pulled from a runnable code example, which
you can find in the sample code. For example, here is a code block pulled from the
first chapter:

code/first-app/angular-hello-world/src/app/app.component.ts

export class AppComponent {
title = 'app';
}

Notice that the header of this code block states the path to the file which contains
this code: code/first-app/angular-hello-world/src/app/app.component.ts.

“https://github.com/angular/angular-cli

How to Read This Book 4

If you ever feel like you're missing the context for a code example, open up the full
code file using your favorite text editor. This book is written with the expectation
that you’ll also be looking at the example code alongside the manuscript.

For example, we often need to import libraries to get our code to run. In the early
chapters of the book we show these import statements, because it’s not clear where
the libraries are coming from otherwise. However, the later chapters of the book are
more advanced and they focus on key concepts instead of repeating boilerplate code
that was covered earlier in the book. If at any point you’re not clear on the context,
open up the code example on disk.

Code Block Numbering

In this book, we sometimes build up a larger example in steps. If you see a file
being loaded that has a numeric suffix, that generally means we’re building up to
something bigger.

For instance, in the Dependency Injection chapter you may see a code block with the
filename: price.service.1.ts. When you see the .N.ts syntax that means we're
building up to the ultimate file, which will not have a number. So, in this case, the
final version would be: price.service.ts. We do it this way so that a) we can unit
test the intermediate code and b) you can see the whole file in context at a particular
stage.

A Word on Versioning

As you may know, the Angular covered in this book is a descendant of an earlier
framework called “Angular]S”. This can sometimes be confusing, particularly when
reading supplementary blogs or documentation.

The official branding guidelines state that “AngularyS” is a term reserved for
Angular]S 1.x, that is, the early versions of “Angular”.

Because the new version of Angular used TypeScript (instead of JavaScript) as the
primary language, the ‘JS’ was dropped, leaving us with just Angular. For a long time
the only consistent way to distinguish the two was folks referred to the new Angular
as Angular 2.

How to Read This Book 5

However, the Angular team in 2017 switched to semantic versioning with a new
major-release upgrade slated for every 6 months. Instead of calling the next versions
Angular 4, Angular 5, and so on, the number is also dropped and it’s just Angular.

In this book, when we’re referring to Angular we’ll just say Angular or some-
times Angular X, just to avoid confusion. When we’re talking about “the old-style
JavaScript Angular” we’ll use the term AngularjS or AngularyS 1.x.

Getting Help

While we’ve made every effort to be clear, precise, and accurate you may find that
when you’re writing your code you run into a problem.

Generally, there are three types of problems:

« A “bug” in the book (e.g. how we describe something is wrong)
« A “bug” in our code
« A “bug” in your code

If you find an inaccuracy in how we describe something, or you feel a concept isn’t
clear, email us! We want to make sure that the book is both accurate and clear.

Similarly, if you’ve found a bug in our code we definitely want to hear about it.

If you're having trouble getting your own app working (and it isn’t our example
code), this case is a bit harder for us to handle.

Your first line of defense, when getting help with your custom app, should be our
unofficial community chat room’. We (the authors) are there from time-to-time, but
there are hundreds of other readers there who may be able to help you faster than
we can.

If you’re still stuck, we’d still love to hear from you, and here are some tips for getting
a clear, timely response.

"https://gitter.im/ng-book/ng-book

How to Read This Book 6
Emailing Us
If you’re emailing us asking for technical help, here’s what we’d like to know:

« What revision of the book are you referring to?

« What operating system are you on? (e.g. Mac OS X 10.8, Windows 95)
« Which chapter and which example project are you on?

« What were you trying to accomplish?

« What have you tried® already?

« What output did you expect?

« What actually happened? (Including relevant log output.)

The absolute best way to get technical support is to send us a short, self-contained
example of the problem.

But in any case email us at us@fullstack.io’. We look forward to hearing from you.

Chapter Overview

Before we dive in, I want to give you a feel for the rest of the book and what you can
expect inside.

The first few chapters provide the foundation you need to get up and running
with Angular. You’ll create your first apps, use the built-in components, and start
creating your components.

Next we’ll move into intermediate concepts such as using forms, using APIs, routing
to different pages, and using Dependency Injection to organize our code.

After that, we’ll move into more advanced concepts. We spend a good part of the
book talking about data architectures. Managing state in client/server applications
is hard and we dive deep into two popular approaches: using RxJS Observables and
using Redux. In these chapters, we’ll show how to build the same app, two different

*http://mattgemmell.com/what-have-you-tried/
*mailto:us@fullstack.io

How to Read This Book 7

ways, so you can compare and contrast and evaluate what’s best for you and your
team.

After that, we’ll discuss how to write complex, advanced components using
Angular’s most powerful features. Then we talk about how to write tests for our
app and how we can upgrade our Angular 1 apps to Angular. Finally, we close
with a chapter on writing native mobile apps with Angular using NativeScript.

By using this book, you’re going to learn how to build real Angular apps faster
than spending hours parsing out-dated blog posts.

So hold on tight - you’re about to become an Angular expert, and have a lot of fun
along the way. Let’s dig in!

- Nate (@eigenjoy™)

“https://twitter.com/eigenjoy

Writing Your First Angular Web
Application

Simple Reddit Clone

In this chapter we’re going to build an application that allows the user to post an
article (with a title and a URL) and then vote on the posts.

You can think of this app as the beginnings of a site like Reddit'! or Product Hunt".

In this simple app we’re going to cover most of the essentials of Angular including:

« Building custom components

« Accepting user input from forms

« Rendering lists of objects into views

« Intercepting user clicks and acting on them
« Deploying our app to a server

By the time you’re finished with this chapter you’ll know how to take an empty
folder, build a basic Angular application, and deploy it to production. After working
through this chapter you’ll have a good grasp on how Angular applications are built
and a solid foundation to build your own Angular app.

Here’s a screenshot of what our app will look like when it’s done:

http://reddit.com
“http://producthunt.com

Writing Your First Angular Web Application 2

® O ® | | angular2 - Simple Reddit | ng-book |

€ = C' |[) localhost:8080 Xl =

E iz | Angular 2 Simple Reddit

Add a Link
Title:

iPad Game for Cats

Link:

http://ipadgameforcats.com| |

Angular 2
3 (angular.io)
QLS 4 upvote < downvote
Fullstack
2 (fullstack.io)
POINTS

4 upvote ¥ downvote

Angular Homepage

1 (angular.io)

POINTS
4 upvote <« downvote

Completed application

First, a user will submit a new link and after submitting the users will be able to
upvote or downvote each article. Each link will have a score and we can vote on
which links we find useful.

Writing Your First Angular Web Application 3

® O ® | | angular2 - Simple Reddit | ng-book |

<« C' | [localhost:8080 W=

E waonz | Angular 2 Simple Reddit

Add a Link

Title:

Link:

Angular 2

POINTS
4 upvote ¥ downvote

iPad Game for Cats

POINTS
4 upvote ¥ downvote

Angular Homepage

POINTS
4 upvote -~ downvote

I'II*I

App with new article

In this project, and throughout the book, we’re going to use TypeScript. TypeScript is
a superset of JavaScript ES6 that adds types. We’re not going to talk about TypeScript
in depth in this chapter, but we’ll go over TypeScript more in depth in the next
chapter.

Don’t worry if you're having trouble with some of the new syntax. If you’re familiar
with ES5 (“normal” JavaScript) / ES6 (ES2015) you should be able to follow along and
we’ll talk more about TypeScript in a bit.

1

Writing Your First Angular Web Application 4

Getting started

Node.js and npm

To get started with Angular, you’ll need to have Node.js installed. There are a couple
of different ways you can install Node.js, so please refer to the Node.js website' for
detailed information.

Make sure you install Node 12.2.0 or higher.

If you're on a Mac, your best bet is to install Node.js directly from
the Node.js website instead of through another package manager (like
Homebrew). Installing Node.js via Homebrew is known to cause some
issues.

The Node Package Manager (npm for short) is installed as a part of Node.js. To check
if npm is available as a part of our development environment, we can open a terminal
window and type:

$ npm -v

If a version number is not printed out and you receive an error, make sure to
download a Node.js installer that includes npm.

Your npm version should be 6.9.0 or higher.

TypeScript

Once you have Node.js setup, the next step is to install TypeScript. Make sure you
install at least version 2.1 or greater. To install it, run the following npm command:

$ npm install -g typescript

Phttps://nodejs.org/download/

Writing Your First Angular Web Application 5

Do I have to use TypeScript? No, you don’t have to use TypeScript to
use Angular, but you probably should. Angular does have an ES5 API,
but Angular is written in TypeScript and generally that’s what everyone
is using. We're going to use TypeScript in this book because it’s great and
it makes working with Angular easier. That said, it isn’t strictly required.

Browser

We highly recommend using the Google Chrome Web Browser'* to develop Angular
apps. We'll use the Chrome developer toolkit throughout this book. To follow along
with our development and debugging we recommend downloading it now.

Special instruction for Windows users

Throughout this book, we will be using Unix/Mac commands in the terminal. Most
of these commands, like 1s and cd, are cross-platform. However, sometimes these
commands are Unix/Mac-specific or contain Unix/Mac-specific flags (like 1s -1p).

As a result, be alert that you may have to occasionally determine the equivalent of
a Unix/Mac command for your shell. Fortunately, the amount of work we do in the
terminal is minimal and you will not encounter this issue often.

Windows users should be aware that our terminal examples use Unix/Mac
commands.

Angular CLI

Angular provides a utility to allow users to create and manage projects from the
command line. It automates tasks like creating projects, adding new controllers, etc.
It’s generally a good idea to use Angular CLI as it will help create and maintain
common patterns across our application.

To install Angular CLI, run the following command:

“https://www.google.com/chrome/

1

Writing Your First Angular Web Application

$ npm install -g @angular/cli

Once it’s installed you’ll be able to run it from the command line using the ng
command. When you do, you’ll see a lot of output, but if you scroll back, you should

be able to see the following:

$ ng --version

If everything installed correctly, you should see the current version output to your

terminal. Congratulations!

P If you’re running OSX or Linux, you might receive this line in the output:

1

If you're curious about all of the things that Angular CLI can do, try out this

Could not start watchman; falling back to NodeWatcher for file system events.

This means that we don’t have a tool called watchman installed. This
tool helps Angular CLI when it needs to monitor files in your filesystem
for changes. If you’re running OSX, it’s recommended to install it using
Homebrew with the following command:

$ brew install watchman

If you’re on OSX and got an error when running brew, it means that
you probably don’t have Homebrew installed. Please refer to the page
http://brew.sh/ to learn how to install it and try again.

If you’re on Linux, you may refer to the page https://ember-cli.com/user-
guide/#watchman for more information about how to install watchman.

If you’re on Windows instead, you don’t need to install anything and
Angular CLI will use the native Node.js watcher.

command:

Writing Your First Angular Web Application 7

$ ng --help

Don’t worry about understanding all of the options - we’ll be covering the important
ones in this chapter.

Now that we have Angular CLI and its dependencies installed, let’s use this tool to
create our first application.

Example Project

Open up the terminal and run the ng new command to create a new project from
scratch:

$ ng new angular-hello-world

Once you run it, you maybe asked a few questions about your configuration
preferences.

For example, if asked if you want to add Angular routing, in this example
say No, but you’ll probably want to use it for a bigger project

When asked about what CSS framework you want to use, we’ll just use
CSS for now.

After you answer the questions, you'll see (roughly) following output:

Once you run it, you’ll see (roughly) following output:

© 00 1 O U b w N =

W oW W oW N NN DN DN NN NN N S R R
® RN PO OO0 0N R, O OO0 0N ®N R

Writing Your First Angular Web Application 8

CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE

angular-hello-world/README.md (1034 bytes)
angular-hello-world/angular. json (3504 bytes)
angular-hello-world/package. json (1323 bytes)
angular-hello-world/tsconfig. json (384 bytes)
angular-hello-world/tslint. json (2805 bytes)
angular-hello-world/.editorconfig (245 bytes)
angular-hello-world/.gitignore (503 bytes)
angular-hello-world/src/environments/environment.prod.ts (51 bytes)
angular-hello-world/src/environments/environment.ts (631 bytes)
angular-hello-world/src/favicon.ico (5430 bytes)
angular-hello-world/src/index.html (304 bytes)
angular-hello-world/src/main.ts (370 bytes)
angular-hello-world/src/polyfills.ts (3194 bytes)
angular-hello-world/src/test.ts (642 bytes)
angular-hello-world/src/assets/.gitkeep (0 bytes)
angular-hello-world/src/styles.css (80 bytes)
angular-hello-world/src/browserslist (375 bytes)
angular-hello-world/src/karma.conf.js (964 bytes)
angular-hello-world/src/tsconfig.app. json (194 bytes)
angular-hello-world/src/tsconfig.spec. json (282 bytes)
angular-hello-world/src/tslint. json (314 bytes)
angular-hello-world/src/app/app.module.ts (314 bytes)
angular-hello-world/src/app/app.component.css (@ bytes)
angular-hello-world/src/app/app.component.html (1141 bytes)
angular-hello-world/src/app/app.component.spec.ts (986 bytes)
angular-hello-world/src/app/app.component.ts (207 bytes)
angular-hello-world/e2e/protractor.conf. js (752 bytes)
angular-hello-world/e2e/src/app.e2e-spec.ts (299 bytes)
angular-hello-world/e2e/src/app.po.ts (208 bytes)
angular-hello-world/e2e/tsconfig.e2e. json (213 bytes)

added 1146 packages in 105.319s
Successfully initialized git.

This will run for a while while it’s installing npm dependencies. Once it finishes we’ll
see a success message.

the version of @angular/cli that was installed.

g The exact files that your project generates may vary slightly depending on

There are a lot of files generated! Don’t worry about understanding all of them yet.

© 00 1 O U b w N =

N
B W N s

© 00 1 O U b w N =

=
N N O

13

Writing Your First Angular Web Application 9

Throughout the book we’ll walk through what each one means and what it’s used
for.

Let’s go inside the angular-hello-world directory, which the ng command created

for us and see what has been created:

$ cd angular-hello-world
$ tree -F -L 1

| -- README.md // a useful README

|-- angular. json // angular-cli configuration file
|-- e2e/ // end-to-end tests

| -- node_modules/ // installed dependencies

| -- package-lock. json // npm dependencies lockfile

| -- package. json // npm configuration

|-- src/ // our application's code

|-- tsconfig. json // typescript config

T-- tslint. json // linting config

3 directories, 6 files

The tree command is completely optional. But if you’re on OSX it can be
installed via brew install tree

For now, the folder we’re interested in is src, where we’ll put our custom application
code. Let’s take a look at what was created there:

$ cd src
$ tree -F

I-- app/

| | -- app.component.css

| | -- app.component.html

| | -- app.component.spec.ts
| | -- app.component.ts

| “-- app.module.ts

|-- assets/

|-- browserslist

|-- environments/

| |-- environment.prod.ts

14
15
16
17
18
19
20
21
22
23
24
25
26

0 N O O & W N -

11
12
13
14

Writing Your First Angular Web Application

| “-- environment.ts
|-- favicon.ico

|-- index.html

|-- karma.conf. js

|-- main.ts

|-- polyfills.ts

|-- styles.css

|-- test.ts

|-- tsconfig.app. json
|-- tsconfig.spec. json
-- tslint. json

3 directories, 18 files

Using your favorite text editor, let’s open index.html. You should see this code:

code/first-app/angular-hello-world/src/index.html

10

<!doctype html>

<html lang="en">

<head>
<meta charset="utf-8">
<title>AngularHelloWorld</title>
<base href="/">

<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="icon" type="image/x-icon" href="favicon.ico">

</head>

<body>
<app-root></app-root>

</body>

</html>

Let’s break it down a bit:

g o W

w I O

10

11
12
13
14

Writing Your First Angular Web Application 11

code/first-app/angular-hello-world/src/index.html

<Idoctype html>

<html lang="en">

<head>
<meta charset="utf-8">
<title>AngularHelloWorld</title>
<base href="/">

<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="icon" type="image/x-icon" href="favicon.ico">
</head>

If you're familiar with writing HTML files, this first part is straightforward, we’re
declaring the core structure of the HTML document and a few bits of metadata such
as page charset, title and base href.

If we continue to the template body, we see the following:

code/first-app/angular-hello-world/src/index.html

<body>
<app-root></app-root>

</body>

</html>

The app-root tag is where our application will be rendered.

But what is the app-root tag and where does it come from? app-root is a component
that is defined by our Angular application. In Angular we can define our own
HTML tags and give them custom functionality. The app-root tag will be the “entry
point” for our application on the page.

Let’s try running this app as-is and then we’ll dig in to see how this component is

defined.

Writing Application Code
Running the application

Before making any changes, let’s load our app from the generated application into
the browser. Angular CLI has a built in HTTP server that we can use to run our app.

BwWw N

=~ O O

Writing Your First Angular Web Application 12

To use it, head back to the terminal, and change directories into the root of our
application.

$ cd angular-hello-world

$ ng serve

** NG Live Development Server is running on http://localhost:4200. **
/]

// a bunch of other messages

/]

Compiled successfully.

Our application is now running on localhost port 4200. Let’s open the browser and
visit:

http://localhost:4200"

ﬁ Note that if you get the message:

1 Port 4200 is already in use. Use '--port' to specify a different port

This means that you already have another service running on port 4200. If
this is the case you can either 1. shut down the other service or 2. use the
--port flag when running ng serve like this:

1 ng serve --port 9001

The above command would change the URL you open in your browser to
something like: http://localhost: 9001

Another thing to notice is that, on some machines, the domain localhost
may not work. You may see a set of numbers such as127.0.0.1. When you
runng serve it should show you what URL the server is running on, so be

sure to read the messages on your machine to find your exact development
URL.

Phttp://localhost:4200

Writing Your First Angular Web Application 13

® 0 ® @y angularHelioworld X A ng-book

&« C | @ localhost:4200 h+4

Welcome to app!

Here are some links to help you start:
+ Tour of Heroes
+ CLI Documentation

« Angular blog

Running application

Now that we have the application setup, and we know how to run it, it’s time to start
writing some code.

Making a component

One of the big ideas behind Angular is the idea of components.

In our Angular apps, we write HTML markup that becomes our interactive appli-
cation, but the browser only understands a limited set of markup tags; Built-ins
like <select> or <form> or <video> all have functionality defined by our browser
creator.

What if we want to teach the browser new tags? What if we wanted to have a
<weather> tag that shows the weather? Or what if we want to create a <login> tag
that shows a login panel?

o O B W N =

Writing Your First Angular Web Application 14

This is the fundamental idea behind components: we will teach the browser new
tags that have custom functionality attached to them.

If you have a background in Angular]S 1.X, you can think of components
as the new version of directives.

Let’s create our very first component. When we have this component written, we
will be able to use it in our HTML document using the app-hello-world tag:

<app-hello-world></app-hello-world>

To create a new component using Angular CLI, we’ll use the generate command.

To generate the hello-world component, we need to run the following command:

$ ng generate component hello-world

CREATE src/app/hello-world/hello-world.component.css (0 bytes)
CREATE src/app/hello-world/hello-world.component.html (30 bytes)
CREATE src/app/hello-world/hello-world.component.spec.ts (657 bytes)
CREATE src/app/hello-world/hello-world.component.ts (288 bytes)
UPDATE src/app/app.module.ts (414 bytes)

So how do we actually define a new Component? A basic Component has two parts:

1. A Component decorator
2. A component definition class

Let’s look at the component code and then take these one at a time. Open up our first
TypeScript file: src/app/hello-world/hello-world.component .ts.

© 00 N O U b W N =

[e e
g b W N » o

Writing Your First Angular Web Application 15

code/first-app/angular-hello-world/src/app/hello-world/hello-world.component.ts

import { Component, OnInit } from '@angular/core';

@Component ({
selector: 'app-hello-world',
templateUrl: './hello-world.component.html',
styleUrls: ['./hello-world.component.css']

b
export class HelloWorldComponent implements OnlInit {

constructor() { }

ngOnInit() {
}

This snippet may seem scary at first, but don’t worry. We’re going to walk through
it step by step.

Notice that we suffix our TypeScript file with .ts instead of .js The
problem is our browser doesn’t know how to interpret TypeScript files.
To solve this gap, the ng serve command live-compiles our .ts to a . js
file automatically.

Importing Dependencies

The import statement defines the modules we want to use to write our code. Here
we’re importing two things: Component, and OnInit.

We import Component from the module "@angular/core". The "@angular/core"
portion tells our program where to find the dependencies that we’re looking for. In
this case, we're telling the compiler that "@angular/core" defines and exports two
JavaScript/TypeScript objects called Component and OnInit.

Similarly, we import OnInit from the same module. As we’ll learn later, OnInit helps
us to run code when we initialize the component. For now, don’t worry about it.

SN N N

w N~

Writing Your First Angular Web Application 16

Notice that the structure of this import is of the format import { things } from
wherever. In the { things } part what we are doing is called destructuring. De-
structuring is a feature provided by ES6 and TypeScript. We will talk more about it
in the next chapter.

The idea with import is a lot like import in Java or require in Ruby: we’re pulling
in these dependencies from another module and making these dependencies
available for use in this file.

Component Decorators

After importing our dependencies, we are declaring the component:

code/first-app/angular-hello-world/src/app/hello-world/hello-world.component.ts

@Component ({
selector: 'app-hello-world',
templateUrl: './hello-world.component.html',
styleUrls: ['./hello-world.component.css']

iy

If you’re new to TypeScript then the syntax of this next statement might seem a little
foreign:

@Component ({
/).
b

What is going on here? These are called decorators.

We can think of decorators as metadata added to our code. When we use @Compo-
nent on the HelloWorld class, we are “decorating” HelloWor1d as a Component.

We want to be able to use this component in our markup by using a <app-hello-
world> tag. To do that, we configure the @Component and specify the selector as
app-hello-world.

BwWw N

Writing Your First Angular Web Application 17

@Component ({
selector: 'app-hello-world'

// ... more here

)

The syntax of Angular’s component selectors is similar to CSS selectors (though
Angular components have some special syntax for selectors, which we’ll cover later
on). For now, know that with this selector we're defining a new tag that we can
use in our markup.

The selector property here indicates which DOM element this component is going
to use. In this case, any <app-hello-world></app-hello-world> tags that appear
within a template will be compiled using the HelloWorldComponent class and get
any attached functionality.

Adding a template with templateurl

In our component we are specifying a templateUrl of . /hello-world.component.html.
This means that we will load our template from the filehello-world.component . html
in the same directory as our component. Let’s take a look at that file:

code/first-app/angular-hello-world/src/app/hello-world/hello-world.component.html

<p>
hello-world works!
</p>

Here we’re defining a p tag with some basic text in the middle. When Angular loads
this component it will also read from this file and use it as the template for our
component.

Adding a template

We can define templates two ways, either by using the template key in our
@Component object or by specifying a templateUrl.

We could add a template to our @Component by passing the template option:

0 N O O B W N

Writing Your First Angular Web Application

@Component ({

selector:

"app-hello-world',

template: °

<p>

hello-world works inline!

</p>

b

18

Notice that we’re defining our template string between backticks (* ... *). This is
a new (and fantastic) feature of ES6 that allows us to do multiline strings. Using
backticks for multiline strings makes it easy to put templates inside your code files.

Should you really be putting templates in your code files? The answer
is: it depends. For a long time the commonly held belief was that you should
keep your code and templates separate. While this might be easier for some
teams, for some projects it adds overhead because you have switch between
a lot of files.

Personally, if our templates are shorter than a page, we much prefer to
have the templates alongside the code (that is, within the .ts file). When
we see both the logic and the view together, it’s easy to understand how
they interact with one another.

The biggest drawback to mixing views and our code is that many editors
don’t support syntax highlighting of the internal strings (yet). Hopefully,
we’ll see more editors supporting syntax highlighting HTML within tem-
plate strings soon.

Adding CSS Styles with styleuris

Notice the key styleUrls:

styleUrls:

["./hello-world.component.css']

This code says that we want to use the CSS in the file hello-world.component.css
as the styles for this component. Angular uses a concept called “style-encapsulation”

g W N

Writing Your First Angular Web Application 19

which means that styles specified for a particular component only apply to that
component. We talk more about this in-depth later on in the book in the Styling
section of Advanced Components.

For now, we’re not going to use any component-local styles, so you can leave this
as-is (or delete the key entirely).

You may have noticed that this key is different from template in that it
accepts an array as it’s argument. This is because we can load multiple
stylesheets for a single component.

Loading Our Component

Now that we have our first component code filled out, how do we load it in our page?

If we visit our application again in the browser, we’ll see that nothing changed. That’s
because we only created the component, but we’re not using it yet.

In order to change that, we need to add our component tag to a template that is al-
ready being rendered. Open up the file: first_app/angular-hello-world/src/app/app.compone

Remember that because we configured our HelloWor 1dComponent with the selector
app-hello-world, we can use the <app-hello-world></app-hello-world> in our
template. Let’s add the <app-hello-world> tag to app.component.html

Delete the content in app.component.html and replace it with:

code/first-app/angular-hello-world/src/app/app.component.html

<h1>
{{title}}

<app-hello-world></app-hello-world>
</h1>

Now refresh the page and take a look:

Writing Your First Angular Web Application 20

® ©® | yyanguiarzHelioworid ng-book

€ C' [7 localhost:4200 e =

app works!

hello-world works!

Hello world works

It works!

Adding Data to the Component

Right now our component renders a static template, which means our component
isn’t very interesting.

Let’s imagine that we have an app which will show a list of users and we want
to show their names. Before we render the whole list, we first need to render an
individual user. So let’s create a new component that will show a user’s name.

To do this, we will use the ng generate command again:

=~ O U oW N

(e}

10
11
12
13
14
15
16
17
18

Writing Your First Angular Web Application 21

ng generate component user-item

Remember that in order to see a component we’ve created, we need to add it to a
template.

Let’s add our app-user-item tag to app.component.html so that we can see our
changes as we make them. Modify app . component . html to look like this:

code/first-app/angular-hello-world/src/app/app.component.html
<h1>
{{title})

<app-hello-world></app-hello-world>

<app-user-item></app-user-item>
</h1>

Then refresh the page and confirm that you see the user-item works! text on the
page.
We want our UserItemComponent to show the name of a particular user .

Let’s introduce name as a new property of our component. By having a name property,
we will be able to reuse this component for different users (but keep the same markup,
logic, and styles).

In order to add a name, we’ll introduce a property on the UserItemComponent class
to declare it has a local variable named name.

code/first-app/angular-hello-world/src/app/user-item/user-item.component.ts

export class UserItemComponent implements OnInit {

name: string; // <-- added name property

constructor() {
this.name = 'Felipe'; // set the name

}

ngOnInit() {
}

Notice that we’ve changed two things :

11
12

Writing Your First Angular Web Application 22

1. name Property

On the UserItemComponent class we added a property. Notice that the syntax is
new relative to ES5 JavaScript. When we write name: string; it means that we’re
declaring the name property to be of type string.

Being able to assign a type to a variable is what gives TypeScript it’s name. By setting
the type of this property to string, the compiler ensures that name variable isastring
and it will throw an error if we try to assign, say, a number to this property.

This syntax is also the way TypeScript defines instance properties. By putting name:
string in our code like this, we’re giving every instance of UserItemComponent a
property name.

2. A Constructor

On the UserItemComponent class we defined a constructor, i.e. a function that is called
when we create new instances of this class.

In our constructor we can assign our name property by using this.name

When we write:

code/first-app/angular-hello-world/src/app/user-item/user-item.component.ts

constructor() {
this.name = 'Felipe'; // set the name

}

We're saying that whenever a new UserItemComponent is created, set the name to
'Felipe'.

Rendering The Template

When we have a property on a component, we can show that value in our template
by using two curly brackets {{ }} to display the value of the variable in our template.
For instance:

w N

Writing Your First Angular Web Application 23

code/first-app/angular-hello-world/src/app/user-item/user-item.component.html

<p>
Hello {{ name }}
</p>

On the template notice that we added a new syntax: {{ name }}. The brackets are
called template tags (or sometimes mustache tags).

Whatever is between the template tags will be expanded as an expression. Here,
because the template is bound to our Component, the name will expand to the value
of this.name i.e. 'Felipe'.

Try It Out

After making these changes reload the page and the page should display Hello
Felipe

Writing Your First Angular Web Application 24

® ©® | yyanguiarzHeloworid x ng-book

€ C' [7 localhost:4200 e =

app works!
hello-world works!

Hello Felipe

Application with Data

Working With Arrays

Now we are able to say “Hello” to a single name, but what if we want to say “Hello”
to a collection of names?

In Angular we can iterate over a list of objects in our template using the syntax
*ngFor. The idea is that we want to repeat the same markup for a collection of
objects.

o If you've worked with Angular]S 1.X before, you’ve probably used the

ng-repeat directive. NgFor works much the same way:.

Let’s create a new component that will render a list of users. We start by generating

=N O U W N

10
11
12
13
14
15
16
17
18

Writing Your First Angular Web Application 25

a new component:

ng generate component user-list

Andlet’s replace our <app-user-item> tag with <app-user-1list> in ourapp.component.html
file:

code/first-app/angular-hello-world/src/app/app.component.html

<h1>
{{title}}

<app-hello-world></app-hello-world>

<app-user-list></app-user-list>
</h1>

In the same way we added a name property to our UserItemComponent, let’s add a
names property to this UserListComponent.

However, instead of storing only a single string, let’s set the type of this property to
an array of strings. An array is notated by the [] after the type, and the code looks
like this:

code/first-app/angular-hello-world/src/app/user-list/user-list.component.ts

export class UserlListComponent implements OnInit {
names: string[];

constructor() {
this.names = ['Ari', 'Carlos', 'Felipe', 'Nate'];

}

ngOnInit() {
}

The first change to point out is the new string[] property on our UserL istComponent
class. This syntax means that names is typed as an Array of strings. Another way to
write this would be Array<string>.

w N =

Writing Your First Angular Web Application 26

We changed our constructor to set the value of this.names to ['Ari', 'Carlos’,
'Felipe', 'Nate'].
Now we can update our template to render this list of names. To do this, we will use

*ngFor, which will

« iterate over a list of items and
- generate a new tag for each one.

Here’s what our new template will look like:

code/first-app/angular-hello-world/src/app/user-list/user-list.component.html

<1li *ngFor="let name of names">Hello {{ name }}</1li>

We updated the template with one ul and one 1i with a new *ngFor="1et name of
names" attribute. The * character and let syntax can be a little overwhelming at first,
so let’s break it down:

The *ngFor syntax says we want to use the NgFor directive on this attribute. You can
think of NgFor akin to a for loop; the idea is that we’re creating a new DOM element
for every item in a collection.

The value states: "let name of names".names is our array of names as specified on
the UserListComponent object. let name is called a reference. When we say "let
name of names" we’re saying loop over each element in names and assign each one
to a local variable called name.

The NgFor directive will render one 11 tag for each entry found on the names array
and declare a local variable name to hold the current item being iterated. This new
variable will then be replaced inside the Hello {{ name }} snippet.

Writing Your First Angular Web Application

4

) o

We didn’t have to call the reference variable name. We could just as well
have written:

<li *ngFor="let foobar of names">Hello {{ foobar }}

But what about the reverse? Quiz question: what would have happened if
we wrote:

<li *ngFor="let name of foobar">Hello {{ name }}</1li>

Answer: We'd get an error because foobar isn’t a property on the compo-
nent.

NgFor repeats the element that the ngFor is called. That is, we put it on the
li tag and not the ul tag because we want to repeat the list element (11)
and not the list itself (u1).

Note that the capitalization here isn’t a typo: NgFor is the capitalization
of the class that implements the logic and ngFor is the “selector” for the
attribute we want to use.

If you’re feeling adventurous you can learn a lot about how the Angular
core team writes Components by reading the source directly. For instance,
you can find the source of the NgFor directive here®.

27

When we reload the page now, we’ll see that we now have one 11 for each string in

the array:

'*https://github.com/angular/angular/blob/master/packages/common/src/directives/ng_for_of.ts

Writing Your First Angular Web Application 28

® ©® | yyanguiarzHeloworid ng-book

C' [7 localhost:4200 7% =

app works!
hello-world works!

« Hello Ari

+ Hello Carlos
« Hello Felipe
+ Hello Nate

Application with Data

Using the User Item Component

Remember that earlier we created a UserItemComponent? Instead of rendering each
name within the UserListComponent, we ought to use UserItemComponent as a child
component - that is, instead of rendering the text Hello and the name directly, we
should let our UserItemComponent specify the template (and functionality) of each
item in the list.

To do this, we need to do three things:

1. Configure the UserListComponent to render to UserItemComponent (in the
template)
2. Configure the UserItemComponent to accept the name variable as an input and

a b W N =

Writing Your First Angular Web Application 29

3. Configure the UserListComponent template to pass the name to the UserItem-
Component.

Let’s perform these steps one-by-one.

Rendering the useritemComponent

Our UserItemComponent specifies the selector app-user-item - let’s add that tag to
our template:

code/first-app/angular-hello-world/src/app/user-list/user-list.component.html

<li *ngFor="let name of names">
<app-user-item></app-user-item>
</1i>

Notice that we swapped out the text Hello and the name for the tag app-user-item.

If we reload our browser, this is what we will see:

Writing Your First Angular Web Application 30

® ©® | yyanguiarzHeloworid ng-book

« C' [1 localhost:4200 75 =

app works!

hello-world works!
Hello Felipe
Hello Felipe
Hello Felipe

Hello Felipe

Application with Data

It repeats, but something is wrong here - every name says “Felipe”! We need a way
to pass data into the child component.

Thankfully, Angular provides a way to do this: the @Input decorator.

Accepting Inputs

Remember that in our User ItemComponent we had set this.name = 'Felipe'; in the
constructor of that component. Now we need to change this component to accept a
value for this property.

Here’s what we need to change on our UserItemComponent:

© 00 N O U b W N =

[I S S T s
© O O N O U b W N =~ O

Writing Your First Angular Web Application 31

code/first-app/angular-hello-world/src/app/user-item/user-item.component.ts

import {

Component,

OnInit,

Input // <--- added this
} from '@angular/core';

@Component ({
selector: 'app-user-item',
templateUrl: './user-item.component.html"',
styleUrls: ['./user-item.component.css']

)
export class UserItemComponent implements OnInit {
@Input() name: string; // <-- added Input annotation

constructor() {
// removed setting name

}

ngOnInit() {}
}

Notice that we changed the name property to have a decorator of @Input. We talk a
lot more about Inputs (and Outputs) in the next chapter, but for now, know that this
syntax allows us to pass in a value from the parent template .

In order to use Input we also had to add it to the list of constants in import.

Lastly, we don’t want to set a default value for name so we remove that from the
constructor.

So now that we have a name Input, how do we actually use it?

Passing an Input value

To pass values to a component we use the bracket [] syntax in our template - let’s
take a look at our updated template:

O B W N

Writing Your First Angular Web Application 32

code/first-app/angular-hello-world/src/app/user-list/user-list.component.html

<li *ngFor="let name of names">
<app-user-item [name]="name"></app-user-item>
</1i>

Notice that we've added a new attribute on our app-user-item tag: [name]="name"
. In Angular when we add an attribute in brackets like [foo] we’re saying we want
to pass a value to the input named foo on that component.

In this case notice that the name on the right-hand side comes from the let name ...
statement in ngFor. That is, consider if we had this instead:

<li *ngFor="let individualUserName of names">
<app-user-item [name]="individualUserName"></app-user-item>
</1i>

The [name] part designates the Input on the UserItemComponent. Notice that we're
not passing the literal string "individualUserName" instead we’re passing the value
of individualUserName, which is, on each pass, the value of an element of names.

We talk more about inputs and outputs in detail in the next chapter. For now, know
that we’re:

1. Tterating over names

2. Creating a new User ItemComponent for each element in names and

3. Passing the value of that name into the name Input property on the UserItem-
Component

Now our list of names works!

Writing Your First Angular Web Application 33

® ©® | yyanguiarzHeloworid x ng-book

C' [7 localhost:4200 e =

app works!
hello-world works!
Hello Ari
Hello Carlos
Hello Felipe

Hello Nate

Application with Names Working

Congratulations! You’ve built your first Angular app with components!

Of course, this app is very simple and we’d like to build much more sophisticated
applications. Don’t worry, in this book we’ll show you how to become an expert
writing Angular apps. In fact, in this chapter we're going to build a voting-app
(think Reddit or Product Hunt). This app will feature user interaction, and even more
components!

But before we start building a new app, let’s take a closer look at how Angular apps
are bootstrapped.

Bootstrapping Crash Course

Every app has a main entry point. This application was built using Angular CLI
(which is built on a tool called Webpack). We run this app by calling the command:

10
11
12
13

14

16
17
18
19
20
21
22

Writing Your First Angular Web Application 34

ng serve

ng will look at the file angular. json to find the entry point to our app. Let’s trace
how ng finds the components we just built.

At a high level, it looks like this:

« angular. json specifies a "main" file, which in this case ismain.ts

« main.ts is the entry-point for our app and it bootstraps our application

« The bootstrap process boots an Angular module — we haven'’t talked about
modules yet, but we will in a minute

« We use the AppModule to bootstrap the app. AppModule is specified in src/ap-
p/app.module.ts

« AppModule specifies which component to use as the top-level component. In this
case it is AppComponent

+ AppComponent has <app-user-1list> tags in the template and this renders our
list of users.

For now the thing we want to focus on is the Angular module system: NgModule.

Angular has a powerful concept of modules. When you boot an Angular app, you're
not booting a component directly, but instead you create an NgModule which points
to the component you want to load.

Take a look at this code:

code/first-app/angular-hello-world/src/app/app.module.ts

@NgModule({

declarations: [
AppComponent,
HelloWorldComponent,
UserItemComponent,
UserListComponent

1,

imports: [
BrowserModule

1,

providers: [],

bootstrap: [AppComponent]

9]
export class AppModule { }

Writing Your First Angular Web Application 35

The first thing we see is an @NgModule decorator. Like all decorators, this @NgModule(
) code adds metadata to the class immediately following (in this case,
AppModule).

Our @NgModule decorator has four keys: declarations, imports, providers, and
bootstrap.

declarations

declarations specifies the components that are defined in this module. This is an
important idea in Angular:

You have to declare components in a NgModule before you can use them in your
templates.

You can think of an NgModule a bit like a “package” and declarations states what
components are “owned by” this module.

You may have noticed that when we used ng generate, the tool automatically added
our components to this declarations list! The idea is that when we generated a new
component, the ng tool assumed we wanted it to belong to the current NgModule.

imports

imports describes which dependencies this module has. We’re creating a browser
app, so we want to import the BrowserModule.

If your module depends on other modules, you list them here.

9 import vs. imports?
You might be asking the question, “What’s the difference between
importing a class at the top of the file and putting a module in imports?”
The short answer is that you put something in your NgModule’s imports if

you’re going to be using it in your templates or with dependency injection.
We haven’t talked about dependency injection, but rest assured, we will.

Writing Your First Angular Web Application 36

providers

providers is used for dependency injection. So to make a service available to be
injected throughout our application, we will add it here.

P Learn more about this in the section on Dependency Injection.

bootstrap

bootstrap tells Angular that when this module is used to bootstrap an app, we need
to load the AppComponent component as the top-level component.

Expanding our Application

Now that we know how to create a basic application, let’s build our Reddit clone.
Before we start coding, it’s a good idea to look over our app and break it down into
its logical components.

Writing Your First Angular Web Application 37

® O ® | [anguar2- Simple Reddit x | lﬂg-bwa

& - € |[localhost:8080 8 =

nebook2 Angular 2 Simple Reddit

proees Application

Title:

iPad Game for Cats

Link:

http://ipadgameforcats.com| |

o ek Article

(angular.io)

POINTS
4 upvote < downvote

Fullstack i
2 Article

(fullstack.io)

POINTS
- 4 upvote ¥ downvote

Angular Homepage >
1 (angulgar.ic) p g Artl C | e

POINTS

4 upvote <« downvote

Application with Data
We’re going to make two components in this app:
1. The overall application, which contains the form used to submit new articles

(marked in magenta in the picture).
2. Each article (marked in mint green).

Writing Your First Angular Web Application 38

In a larger application, the form for submitting articles would probably
become its own component. However, having the form be its own compo-
nent makes the data passing more complex, so we're going to simplify in
this chapter and have only two components.

For now two components will work fine, but we’ll learn how to deal with
more sophisticated data architectures in later chapters of this book.

But first thing’s first, let’s generate a new application by running the same ng new
command we ran before to create a new application passing it the name of the app
we want to create (here, we’ll create an application called angular-reddit):

ng new angular-reddit

We’ve provided a completed version of our angular-reddit in the example
code download. If you ever need more context, be sure to check it out to
see how everything fits together.

Adding CSS

First thing we want to do is add some CSS styling so that our app isn’t completely
unstyled.

Writing Your First Angular Web Application 39

If you’re building your app from scratch, you’ll want to copy over a few
files from our completed example in the first_app/angular-reddit folder.

Copy:

e src/index.html
e src/styles.css
e src/app/vendor
e src/assets/images

into your application’s folder.

For this project we're going to be using Semantic-UI'" to help with the
styling. Semantic-UI is a CSS framework, similar to Zurb Foundation*® or
Twitter Bootstrap'®. We’ve included it in the sample code download so all
you need to do is copy over the files specified above.

The Application Component

Let’s now build a new component which will:

1. store our current list of articles
2. contain the form for submitting new articles.

We can find the main application component on the src/app/app . component . ts file.
Let’s open this file. Again, we’ll see the same initial contents we saw previously.

http://semantic-ui.com/
®http://foundation.zurb.com
http://getbootstrap.com

© 00 1 O U b W N =

-~
(]

© 00 I O U b w N =

=
SRS

Writing Your First Angular Web Application 40

code/first-app/angular-reddit/src/app/app.component.ts

import { Component } from '@angular/core';

@Component ({
selector: 'app-root',
templateUrl: './app.component.html',
styleUrls: ['./app.component.css']
b
export class AppComponent {
title = 'app works!';

}

Notice that the title property was automatically generated for us on the
AppComponent. Remove that line, because we aren’t using the component
title.

Below we're going to be submitting new links that have a ‘title’, which
could be confused with the AppComponent title that was auto-generated by
Angular CLI Keep in mind that the form ‘title is a separate form field from
the ‘title’ in the links below.

Let’s change the template a bit to include a form for adding links. We’ll use a bit of
styling from the semantic-ui package to make the form look a bit nicer:

code/first-app/angular-reddit/src/app/app.component.html

<form class="ui large form segment">
<h3 class="ui header">Add a Link</h3>

<div class="field">
<label for="title">Title:</label>
<input name="title" id="title">
</div>
<div class="field">
<label for="link">Link:</label>
<input name="1link" id="1link">
</div>

</form>

We’re creating a template that defines two input tags: one for the title of the article
and the other for the 1ink URL.

Writing Your First Angular Web Application 41

When we load the browser you should see the rendered form:

® © ® | gyanguiarzredait x ng-bock

L C' [} localhost:4200

a wwoz Angular 2 Simple Reddit

AddalLink

Title:

Link:

Form

Adding Interaction

Now we have the form with input tags but we don’t have any way to submit the
data. Let’s add some interaction by adding a submit button to our form.

When the form is submitted, we’ll want to call a function to create and add a link.
We can do this by adding an interaction event on the <button /> element.

We tell Angular we want to respond to an event by surrounding the event name in
parentheses (). For instance, to add a function call to the <button /> onClick event,
we can pass it through like so:

BwWw N

10
11
12
13

© 00 N O U b W N =

L
W N o

Writing Your First Angular Web Application 42

<button (click)="addArticle(newtitle, newlink)"
class="ui positive right floated button">
Submit link
</button>

Now, when the button is clicked, it will call a function called addArticle(), which
we need to define on the AppComponent class. Let’s do that now:

code/first-app/angular-reddit/src/app/app.component.ts

export class AppComponent {
addArticle(title: HTMLInputElement, link: HTMLInputElement): boolean {
console.log(Adding article title: ${title.value} and link: ${link.value});
return false;

With the addArticle() function added to the AppComponent and the (click) event
added to the <button /> element, this function will be called when the button is
clicked. Notice that the addArticle() function can accept two arguments: the title
and the 1ink arguments. We need to change our template button to pass those into
the call to the addArticle().

We do this by populating a template variable by adding a special syntax to the input
elements on our form. Here’s what our template will look like:

code/first-app/angular-reddit/src/app/app.component.html

<form class="ui large form segment">
<h3 class="ui header">Add a Link</h3>

<div class="field">

<label for="title">Title:</label>

<input name="title" id="title" #newtitle> <«!/-- changed -->
</div>
<div class="field">

<label for="link">Link:</label>

<input name="link" id="1ink" #newlink> <!/-- changed -->
</div>

<!-- added this button -->
<button (click)="addArticle(newtitle, newlink)"

16
17
18

Writing Your First Angular Web Application 43

class="ui positive right floated button">
Submit link
</button>

</form>

Notice that in the input tags we used the # (hash) to tell Angular to assign those tags
to a local variable. By adding the #newtitle and #newlink to the appropriate <input
/> elements, we can pass them as variables into the addArticle() function on the
button!

To recap what we’ve done, we’ve made four changes:

1. Created a button tag in our markup that shows the user where to click

2. We created a function named addArticle that defines what we want to do when
the button is clicked

3. We added a (click) attribute on the button that says “call the function
addArticle when this button is pressed”.

4. We added the attribute #newtitle and #newlink to the <input> tags

Let’s cover each one of these steps in reverse order:

Binding inputs to values

Notice in our first input tag we have the following:

<input name="title" #newtitle>

This markup tells Angular to bind this <input> to the variable newtitle. The
#newtitle syntax is called a resolve. The effect is that this makes the variable
newtitle available to the expressions within this view.

newtitle is now an object that represents this input DOM element (specifically, the
type is HTMLInputElement). Because newtitle is an object, that means we get the
value of the input tag using newtitle.value.

Similarly we add #newlink to the other <input> tag, so that we’ll be able to extract
the value from it as well.

W N

Writing Your First Angular Web Application 44

Binding actions to events

On our button tag we add the attribute (click) to define what should happen when
the button is clicked on. When the (click) event happens we call addArticle with
two arguments: newtitle and newlink. Where did this function and two arguments
come from?

1. addArticle is a function on our component definition class AppComponent
2. newtitle comes from the resolve (#newtitle) on our <input> tag named title
3. newlink comes from the resolve (*newlink) on our <input> tag named 1ink

All together:

<button (click)="addArticle(newtitle, newlink)"
class="ui positive right floated button">
Submit link
</button>

The markupclass="ui positive right floated button" comesfrom Se-
mantic UI and it gives the button the pleasant green color.

Defining the Action Logic

On our class AppComponent we define a new function called addArticle. It takes
two arguments: title and link. Again, it’s important to realize that title and l1ink
are both objects of type HTMLInputElement and not the input values directly. To get
the value from the input we have to call title.value. For now, we’re just going to
console. log out those arguments.

Writing Your First Angular Web Application 45

code/first-app/angular-reddit/src/app/app.component.ts

9 addArticle(title: HTMLInputElement, link: HTMLInputElement): boolean {

10 console.log(Adding article title: ${title.value} and link: ${link.value}’);
11 return false;

12 }

Notice that we’re using backtick strings again. This is a really handy feature
of ES6: backtick strings will expand template variables!

Here we're putting ${title.value} in the string and this will be replaced
with the value of title.value in the string.

Try it out!

Now when you click the submit button, you can see that the message is printed on
the console:

Writing Your First Angular Web Application 46

| Nate |

® ' ® | @ angular2- Simple Reddit x |

C i | [localhost:8080 gl)

a woz Angular 2 Simple Reddit

Add a Link
Title:

Ng Newsletter

Link:

http://ng-newsletter.com|

= O Elements Console Sources Network Timeline Profiles Resources Audits S 4
® ¥ <topframe> ¥ ¥ Preserve log
Adding article with title: NG Newsletter and link: http://ng-newsletter.com app.ts:129
>
Clicking the Button

Adding the Article Component

Now we have a form to submit new articles, but we aren’t showing the new articles
anywhere. Because every article submitted is going to be displayed as a list on the
page, this is the perfect candidate for a new component.

Let’s create a new component to represent the individual submitted articles.

© 00 1 O O b wWw N =

Y
SRS

Writing Your First Angular Web Application 47

Angular 2

3

POINTS
4 upvote < downvote

A reddit-article

For that, let’s use the ng tool to generate a new component:

ng generate component article
We have three parts to defining this new component:

1. Define the ArticleComponent view in the template

2. Define the ArticleComponent properties by annotating the class with @Compo-
nent

3. Define a component-definition class (ArticleComponent) which houses our
component logic

Let’s talk through each part in detail:

Creating the ArticleComponent template

We define the template using the file article.component.html:

code/first-app/angular-reddit/src/app/article/article.component.html

<div class="four wide column center aligned votes">
<div class="ui statistic">
<div class="value">
{{ votes }}
</div>
<div class="label">
Points
</div>
</div>
</div>
<div class="twelve wide column">

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Writing Your First Angular Web Application 48

{{ title }}

<ul class="ui big horizontal list voters">
<li class="item">
<a href (click)="voteUp()">
<i class="arrow up icon"></i>
upvote

</1i>
<li class="item">
<a href (click)="voteDown()">
<i class="arrow down icon"></i>
downvote

</1i>

</div>

There’s a lot of markup here, so let’s break it down :

3

POINTS

Angular 2

4 upvote + downvote
A Single reddit-article Row

We have two columns:

1. the number of votes on the left and
2. the article information on the right.

We specify these columns with the CSS classes four wide column and twelve wide
column respectively (remember that these come from SemanticUI’s CSS).

We're showing votes and the title with the template expansion strings {{ votes
}} and {{ title }}. The values come from the value of votes and title property
of the ArticleComponent class, which we’ll define in a minute.

10
11

Writing Your First Angular Web Application 49

Notice that we can use template strings in attribute values, as in the href of the
a tag: href="{{ link }}". In this case, the value of the href will be dynamically
populated with the value of 1ink from the component class

On our upvote/downvote links we have an action. We use (click) to bind vo-
teUp()/voteDown() to their respective buttons. When the upvote button is pressed,
the voteUp() function will be called on the ArticleComponent class (similarly with
downvote and voteDown()).

Creating the ArticleComponent

code/first-app/angular-reddit/src/app/article/article.component.ts

@Component ({
selector: 'app-article',
templateUrl: './article.component.html',
styleUrls: ['./article.component.css'],

)

First, we define a new Component with @Component. The selector says that this
component is placed on the page by using the tag <app-article> (i.e. the selector is
a tag name).

So the most essential way to use this component would be to place the following tag
in our markup:

<app-article>

</app-article>
These tags will remain in our view when the page is rendered.

Creating the ArticleComponent Definition Class

Finally, we create the ArticleComponent definition class:

Writing Your First Angular Web Application 50

code/first-app/angular-reddit/src/app/article/article.component.ts

12 export class ArticleComponent implements OnInit {

13 @HostBinding('attr.class') cssClass = 'row';
14 votes: number;

15 title: string;

16 link: string;

17

18 constructor() {

19 this.title = 'Angular’;
20 this.link = 'http://angular.io';
21 this.votes = 10;

22 }

23

24 voteUp() {

25 this.votes += 1;

26 1

27

28 voteDown() {

29 this.votes -= 1;

30 }

31

32 ngOnInit() {

33 1

34

35}

Here we create four properties on ArticleComponent:

cssClass - the CSS class we want to apply to the “host” of this component
votes - a number representing the sum of all upvotes, minus the downvotes
title - a string holding the title of the article
link - a string holding the URL of the article

W=

We want each app-article to be on its own row. We're using Semantic Ul, and
Semantic provides a CSS class for rows* called row.

In Angular, a component host is the element this component is attached to. We
can set properties on the host element by using the @HostBinding() decorator. In this

*°http://semantic-ui.com/collections/grid.html

18
19

21
22

Writing Your First Angular Web Application 51

case, we're asking Angular to keep the value of the host elements class to be in sync
with the property cssClass.

We import HostBinding from the package @angular/core. For instance we
can add HostBinding like this:

1 import { Component, HostBinding } from '@angular/core’;

By using @HostBinding() the host element (the app-article tag) we want to set the
class attribute to have “row”.

Using the @HostBinding() is nice because it means we can encapsulate the
app-article markup within our component. That is, we don’t have to both
use an app-article tag and require a class="row" in the markup of the
parent view. By using the @HostBinding decorator, we’re able to configure
our host element from within the component.

In the constructor() we set some default attributes:

code/first-app/angular-reddit/src/app/article/article.component.ts

constructor() {
this.title = 'Angular’;
this.link = 'http://angular.io';
this.votes = 10;

}

And we define two functions for voting, one for voting up voteUp and one for voting
down voteDown:

25
26
27
28
29
30

0w N O O B W N =

-
S ©

Writing Your First Angular Web Application 52

code/first-app/angular-reddit/src/app/article/article.component.ts

voteUp() {
this.votes += 1;

}

voteDown() {
this.votes -= 1;

}

In voteUp we increment this.votes by one. Similarly we decrement for voteDown.

Using the app-article Component

In order to use this component and make the data visible, we have to add a <app-
article></app-article> tag somewhere in our markup.

In this case, we want the AppComponent to render this new component, so let’s
update the code in that component. Add the <app-article> tagto the AppComponent’s
template right after the closing </ form> tag:

<button (click)="addArticle(newtitle, newlink)"
class="ui positive right floated button">
Submit link
</button>
</form>

<div class="ui grid posts">
<app-article>
</app-article>

</div>

If we generated the ArticleComponent using Angular CLI (via ng generate compo-
nent), by default it should have “told” Angular about our app-article tag (more on
that below). However, if we created this component “by hand” and we reload the
browser now, we might see that the <app-article> tag wasn’t compiled. Oh no!

Whenever hitting a problem like this, the first thing to do is open up your browser’s
developer console. If we inspect our markup (see screenshot below), we can see that
the app-article tag is on our page, but it hasn’t been compiled into markup. Why
not?

Writing Your First Angular Web Application 53

® © ® gyangularzreddit x ng-book

€« C' [localhost:4200 o

[® {] | Elements Console Sources Network Timeline > R 53

. . 0
! ng-book 2 Angular 2 Slmple Reddit v<form _ngcontent-lif-1 class="ui large form segment">
<h3 _ngcontent-1if-1 class="ui header">Add a Link</h3>
»<div _ngcontent-1if-1 class="field">.</div>
»<div _ngcontent-lif-1 class="field">.</div>
<button _ngcontent-lif-1 class="ui positive right floated
button">

Submit link
Add aLink </button>))
v<div _ngcontent-1if-1 class="ui grid posts">
. <app-article _ngcontent-lif-1>
Title: </app-article- = $0
</div>
1:after
</form>
</app-root>
e <l <—— Our app loads here! -->

html body div app-root _form.uilarge.form.segment div.igrid.posts [N aieadl
Styles | Event Listeners DOM Breakpoints Properties

app-article | 28x0 thov @ .cls +
m elenent.style {
}

.ui.gridsx { <styles.</style>
padding-left: 1rem;
padding-right: lrem;

%, :after, tbefore { <styles.</style| | =
box-sizing: inherit; : H
e .]

Inherited from | form. ui. large. form. segment

.ui.large.form { <style>.</style> Show all
font-size: 1.14285714rem;
} » box-sizing border-.
Lui.form { <styles.</styles| > €007 Mrgba(..
5 B display block
} » font-family Lato, ".
& 5 - | > font-size 16gx

Unexpanded tag when inspecting the DOM

This happens because the AppComponent component doesn’t know about the Arti -
cleComponent component yet.

Angular 1 Note: If you’ve used Angular 1 it might be surprising that our
app doesn’t know about our new app-article component. This is because
in Angular 1, directives match globally. However, in Angular you need to

explicitly specify which components (and therefore, which selectors) you
want to use.

On the one hand, this requires a little more configuration. On the other
hand, it’s great for building scalable apps because it means we don’t have
to share our directive selectors in a global namespace.

In order to tell our AppComponent about our new ArticleComponent component, we
need to add the ArticleComponent to the list of declarations in this NgModule.

© 0 3 O O

10
11
12

Writing Your First Angular Web Application 54

We add ArticleComponent to our declarations because ArticleComponent
is part of this module (AppModule). However, if ArticleComponent were part
of a different module, then we might import it with imports.

We’'ll discuss more about NgModules later on, but for now, know that
when you create a new component, you have to put in a declarations
in NgModules.

code/first-app/angular-reddit/src/app/app.module.ts

import { AppComponent } from "./app.component";
import { ArticleComponent } from "./article/article.component";

@NgModule({
declarations: [
AppComponent,
ArticleComponent // <-- added this
1,

See here that we are:

1. importing ArticleComponent and then
2. Adding ArticleComponent to the list of declarations

After you’ve added ArticleComponent to declarations in the NgModule, if we reload
the browser we should see the article properly rendered:

Writing Your First Angular Web Application 55

® ' ® | g angular2 - Simple Aeddit x i ook

« C' [localhost:8080 =

E wiooiz Angular 2 Simple Reddit

Add aLink

Title:

Link:

Angular 2

10

POINTS 4 upvote ¥ downvote

Rendered ArticleComponent component

However, clicking on the vote up or vote down links will cause the page to reload
instead of updating the article list.

JavaScript, by default, propagates the click event to all the parent components.
Because the click event is propagated to parents, our browser is trying to follow the
empty link, which tells the browser to reload.

To fix that, we need to make the click event handler to return false. This will ensure
the browser won’t try to refresh the page. Let’s update our code so that each of the
functions voteUp() and voteDown() return a boolean value of false (tells the browser
not to propagate the event upwards):

g o W N e

©O© 00 N O U b w N =

(SN
[l

Writing Your First Angular Web Application 56

voteDown(): boolean {
this.votes -=1;
return false;

}
// and similarly with “voteUp()"

Now when we click the links we’ll see that the votes increase and decrease properly
without a page refresh.

Rendering Multiple Rows

Right now we only have one article on the page and there’s no way to render more,
unless we paste another <app-article> tag. And even if we did that all the articles
would have the same content, so it wouldn’t be very interesting.

Creating an Article class

A good practice when writing Angular code is to try to isolate the data structures
we are using from the component code. To do this, let’s create a data structure that
represents a single article. Let’s add anew filearticle.model . ts to define anArticle
class that we can use.

code/first-app/angular-reddit/src/app/article/article.model.ts

export class Article {
title: string;
link: string;
votes: number;

constructor(title: string, link: string, votes?: number) {
this.title = title;
this.link = link;
this.votes = votes || 0;
}
}

Here we are creating a new class that represents an Article. Note that this is a plain
class and not an Angular component. In the Model-View-Controller pattern this
would be the Model.

Writing Your First Angular Web Application 57

Each article has a title, a 1ink, and a total for the votes. When creating a new
article we need the title and the 1ink. The votes parameter is optional (denoted by
the ? at the end of the name) and defaults to zero.

Now let’s update the ArticleComponent code to use our new Article class. Instead
of storing the properties directly on the ArticleComponent component let’s store the
properties on an instance of the Article class.

First let’s import the class:

code/first-app/angular-reddit/src/app/article/article.component.ts

import { Article } from './article.model';

Then let’s use it:

code/first-app/angular-reddit/src/app/article/article.component.ts

export class ArticleComponent implements OnInit {
@HostBinding('attr.class') cssClass = 'row';

article: Article;

constructor() {
this.article = new Article(
"Angular’',
'http://angular.io’,
10);

voteUp(): boolean {
this.article.votes += 1;
return false;

voteDown(): boolean {
this.article.votes -= 1;
return false;

ngOnInit() {
}

© 00 N O U b W N =

NN NN NN NN RS S S S S s s s
© ©® 9 O O & W N~ O © 0 < 0 0 b Wb~ O

Writing Your First Angular Web Application 58

Notice what we’ve changed: instead of storing the title, 1ink, and votes properties
directly on the component, we're storing a reference to an article. What’s neat is
that we’ve defined the type of article to be our new Article class.

When it comes to voteUp (and voteDown), we don’t increment votes on the compo-
nent, but rather, we need to increment the votes on the article.

However, this refactoring introduces another change: we need to update our view to
get the template variables from the right location. To do that, we need to change our
template tags to read from article. That is, where before we had {{ votes }}, we
need to change it to {{ article.votes }}, and same with title and link:

code/first-app/angular-reddit/src/app/article/article.component.html

<div class="four wide column center aligned votes">
<div class="ui statistic">
<div class="value">
{{ article.votes }}
</div>
<div class="label">
Points
</div>
</div>
</div>
<div class="twelve wide column">

{{ article.title }}

<ul class="ui big horizontal list voters">
<li class="item">
<a href (click)="voteUp()">
<i class="arrow up icon"></i>
upvote

</1i>
<li class="item">
<a href (click)="voteDown()">
<i class="arrow down icon"></i>
downvote

</1i>

</div>

© 00 1 O U b w N =

NN NN N P R R S sl sl s
a & W N 0 O 0N O O B W N -~ O

Writing Your First Angular Web Application 59

Reload the browser and everything still works.

This situation is better but something in our code is still off: our voteUp and voteDown
methods break the encapsulation of the Article class by changing the article’s
internal properties directly.

voteUp and voteDown currently break the Law of Demeter”* which says
that a given object should assume as little as possible about the structure
or properties of other objects.

The problem is that our ArticleComponent component knows too much about the
Article class internals. To fix that, let’s add voteUp and voteDown methods on the
Article class (we’ll also add a domain function, which we’ll talk about in a moment):

code/first-app/angular-reddit/src/app/article/article.model.ts

export class Article {
title: string;
link: string;

votes: number;

constructor(title: string, link: string, votes?: number) {
this.title = title;
this.link = link;
this.votes = votes || 0;

voteUp(): void {
this.votes += 1;

voteDown(): void {
this.votes -= 1;

// domain() is a utility function that extracts
// the domain from a URL, which we'll explain shortly
domain(): string {
try {
// e.g. http://foo.com/path/to/bar
const domainAndPath: string = this.link.split('//')[1];

*'http://en.wikipedia.org/wiki/Law_of_Demeter

GET THE FULL BOOK

This is the end of the preview
chapter!

Head over to:
https://ng-book.com/2

to download the full package!

ng-book

Learn how to use: The Complete Book
. Eore on Angular
. Routing b e

- Dependency Injection
« Advanced Components
¢ RxJX
Redux
NativeScript

and more!

INSTAN T ACC

PsS://Ng-DOOK.COIT

https://ng-book.com/2

	Table of Contents
	Book Revision
	Bug Reports
	Vote for New Content (new!)
	Be notified of updates via Twitter
	We'd love to hear from you!
	How to Read This Book
	Running Code Examples
	Angular CLI

	Code Blocks and Context
	Code Block Numbering

	A Word on Versioning
	Getting Help
	Emailing Us
	Chapter Overview

	Writing Your First Angular Web Application
	Simple Reddit Clone
	Getting started
	Node.js and npm
	TypeScript
	Browser

	Special instruction for Windows users
	Angular CLI
	Example Project
	Writing Application Code

	Running the application
	Making a Component
	Importing Dependencies
	Component Decorators
	Adding a template with templateUrl
	Adding a template
	Adding CSS Styles with styleUrls
	Loading Our Component

	Adding Data to the Component
	Working With Arrays
	Using the User Item Component
	Rendering the UserItemComponent
	Accepting Inputs
	Passing an Input value

	Bootstrapping Crash Course
	declarations
	imports
	providers
	bootstrap

	Expanding our Application
	Adding CSS
	The Application Component
	Adding Interaction
	Adding the Article Component

	Rendering Multiple Rows
	Creating an Article class

