Tutorials on Api

Learn about Api from fellow newline community members!

  • React
  • Angular
  • Vue
  • Svelte
  • NextJS
  • Redux
  • Apollo
  • Storybook
  • D3
  • Testing Library
  • JavaScript
  • TypeScript
  • Node.js
  • Deno
  • Rust
  • Python
  • GraphQL
  • React
  • Angular
  • Vue
  • Svelte
  • NextJS
  • Redux
  • Apollo
  • Storybook
  • D3
  • Testing Library
  • JavaScript
  • TypeScript
  • Node.js
  • Deno
  • Rust
  • Python
  • GraphQL

Building an API using Firebase Functions for cheap

When I am working on personal projects, I often find the need to setup an API that serves up data to my app or webpages. I get frustrated when I end up spending too much time on hosting and environment issues. These days what I end up doing is hosting the API using Cloud Functions for Firebase . It hits all my requirements: The official name is Cloud Functions for Firebase. In this article, I am going to call it Firebase Functions. This is mostly to distinguish it from Google's other serverless functions-as-a-service: Cloud Functions. You can read more about the differences here . From that page:

Thumbnail Image of Tutorial Building an API using Firebase Functions for cheap

5 Minute Intro to REST APIs

Learn the basics of APIs and what makes an API "RESTful"

Thumbnail Image of Tutorial 5 Minute Intro to REST APIs

I got a job offer, thanks in a big part to your teaching. They sent a test as part of the interview process, and this was a huge help to implement my own Node server.

This has been a really good investment!

Advance your career with newline Pro.

Only $30 per month for unlimited access to over 60+ books, guides and courses!

Learn More

Visualizing Geographic SQL Data on Google Maps

Analytics dashboards display different data visualizations to represent and convey data in ways that allow users to quickly digest and analyze information. Most multivariate datasets consumed by dashboards include a spatial field/s, such as an observation's set of coordinates (latitude and longitude). Plotting this data on a map visualization contextualizes the data within a real-world setting and sheds light on spatial patterns that would otherwise be hidden in the data. Particularly, seeing the distribution of your data across an area connects it to geographical features and area-specific data (i.e., neighborhood/community demographics) available from open data portals. The earliest example of this is the 1854 cholera visualization by John Snow , who marked cholera cases on a map of London's Soho and uncovered the source of the cholera outbreak by noticing a cluster of cases around a water pump. This discovery helped to correctly identify cholera as a waterborne disease and not as an airbourne disease. Ultimately, it changed how we think about disease transmission and the impact our surroundings and environment have on our health. If your data consists of spatial field/s, then you too can apply the simple technique of plotting markers on a map to extrapolate valuable insight from your own data. Map visualizations are eye-catching and take on many forms: heatmaps, choropleth maps, flow maps, spider maps, etc. Although colorful and aesthetically pleasing, these visualizations provide intuitive controls for users to navigate through their data with little effort. To create a map visualization, many popular libraries (e.g., Google Maps API and deck.gl ) support drawing shapes, adding markers and overlaying geospatial visualization layers on top of a set of base map tiles. Each layer generates a pre-defined visualization based on a collection of data. It associates each data point with certain attributes (color, size, etc.) and renders them on to a map.

Thumbnail Image of Tutorial Visualizing Geographic SQL Data on Google Maps

Deploying a Node.js and PostgreSQL Application to Heroku

Serving a web application to a global audience requires deploying, hosting and scaling it on reliable cloud infrastructure. Heroku is a cloud platform as a service (PaaS) that supports many server-side languages (e.g., Node.js, Go, Ruby and Python), monitors application status in a beautiful, customizable dashboard and maintaining an add-ons ecosystem for integrating tools/services such as databases, schedulers, search engines, document/image/video processors, etc. Although it is built on AWS, Heroku is simpler to use compared to AWS. Heroku automatically provisions resources and configures low-level infrastructure so developers can focus exclusively on their application without the additional headache of manually setting up each piece of hardware and installing an operating system, runtime environment, etc. When deploying to Heroku, Heroku's build system packages the application's source code and dependencies together with a language runtime using a buildpack and slug compiler to generate a slug , which is a highly optimized and compressed version of your application. Heroku loads the slug onto a lightweight container called a dyno . Depending on your application's resource demands, it can be scaled horizontally across multiple concurrent dynos. These dynos run on a shared host, but the dynos responsible for running your application are isolated from dynos running other applications. Initially, your application will run on a single web dyno, which serves your application to the world. If a single web dyno cannot sufficiently handle incoming traffic, then you can always add more web dynos. For requests exceeding 500ms to complete, such as uploading media content, consider delegating this expensive work as a background job to a worker dyno. Worker dynos process these jobs from a job queue and run asynchronously to web dynos to free up the resources of those web dynos.

Thumbnail Image of Tutorial Deploying a Node.js and PostgreSQL Application to Heroku

React Query Builder - The Ultimate Querying Interface

From businesses looking to optimize their operations, data influences the decisions being made. For scientists looking to validate their hypotheses, data influences the conclusions being arrived at. Regardless, the sheer amount of data collected and harnessed from various sources presents the challenge of identifying rising trends and interesting patterns hidden within this data. If the data is stored within an SQL database, such as PostgreSQL , querying data with the expressive power of the SQL language unlocks the data's underlying value. Creating interfaces to fully leverage the constructs of SQL in analytics dashboards can be difficult if done from scratch. With a library like React Query Builder , which contains a query builder component for fetching and exploring rows of data with the exact same query and filter rules provided by the SQL language, we can develop flexible, customizable interfaces for users to easily access data from their databases. Although there are open source, administrative tools like pgAdmin , these tools cannot be integrated directly into a custom analytics dashboard (unless embedded within an iframe). Additionally, you would need to manage more user credentials and permissions, and these tools may be considered too overwhelming or technical for users who aren't concerned with advanced features, such as a procedural language debugger, and intricate back-end and database configurations. By default, the <QueryBuilder /> component from the React Query Builder library contains a minimal set of controls only for querying data with pre-defined rules. Once the requested data is queried, this data can then be summarized by rendering it within a data visualization, such as a table or a line graph.

Thumbnail Image of Tutorial React Query Builder - The Ultimate Querying Interface

Writing Retrowave in Angular

Web Audio API has been around for a while now and there are lots of great articles about it. So I will not go into details regarding the API. What I will tell you is Web Audio can be Angular's best friend if you introduce it well. So let's do this.

Thumbnail Image of Tutorial Writing Retrowave in Angular